先人たちが苦労の末に編み出してきた術式の一覧です。
暗記するだけで使えるものではありません。
意味を読み解いて操作するためには修練が必要となります。
さまざまな技法を組み合わせて使いこなしてこそ真の術者と呼べるでしょう。
F=mav=at+v0x=x0+v0t+12at2
F | 力 |
m | 質量 |
a | 加速度 |
v | 速度 |
v0 | 初速度 |
x | 位置 |
x0 | 初期位置 |
t | 時間 |
この世界の万物の運動に関わる基本法則の神秘をシンボリックに表したものです。 魔導院初等科ではこの形を学びますが、加速度が一定の場合にしか使えず、あまり応用が利きません。見習い魔法使いのための安全な術式と言えるでしょう。
F=md2xdt2
F | 力 |
m | 質量 |
x | 位置 |
t | 時間 |
加速度の部分を2階微分で表現したものです。物体に掛かる力が時間変化するような場合にも対応できます。この式のFに具体的な力の形を代入したものを解くことができればあらゆる運動を未来永劫に渡って予言する能力を手にすることができるでしょう。
しかし単純な組み合わせ術式からでも容易にカオスが生じることが知られており、術者を長く苦しめることがあります。
\begin{align*} \mathrm{rot} \Vec{E} + \pdif{\Vec{B}}{t} &= 0 \\[3pt] \mathrm{rot} \Vec{H} - \pdif{\Vec{D}}{t} &= \Vec{i} \\[5pt] \mathrm{div} \Vec{D} &= \rho \\[5pt] \mathrm{div} \Vec{B} &= 0 \end{align*}
この世に光をもたらしている秘密をまとめ上げた連立術式です。 これを理解し、使いこなすことができれば、光を操ることさえできると言われています。 さらには「目には見えない光」の存在を知ることもできるようです。
\square A^{\mu} - \partial^{\mu} ( \partial_{\nu} A^{\nu} ) = - \mu\sub{0} \, j^{\mu} (A^{\mu}:4元ポテンシャル \ \ \ \mu\sub{0}:透磁率 \ \ \ j^{\mu}:4元電流密度)
4つの式で表されていた式を特別な技法で一つの式に集約させたものです。その技法には大きく2つの流派があり、右辺の負号を付けない形を使うこともあります。天の理(ことわり)を探るためにはこのように一つにまとめられた形の式を操ることがよく行われます。一方で、地の理を探るためにはさまざまな事象に対応する必要があり、先ほどの4つに分かれた式の方がよく使われています。
「ウェーバー比」は感覚の種類により異なった定数となります。
\begin{align*} \frac{ΔR}{R}=k \end{align*}
R | 基礎刺激 |
ΔR | 丁度可知差異 |
k | ウェーバー比 |
\begin{align*} E=k logR \end{align*}
E | 感覚量 |
R | 刺激量 |
k | ウェーバー比 |
\pddif{\phi}{x} \ +\ \pddif{\phi}{y} \ +\ \pddif{\phi}{z} \ =\ 0
\pddif{\phi}{x} \ +\ \pddif{\phi}{y} \ +\ \pddif{\phi}{z} \ =\ f(x,y,z)
\pddif{\phi}{x} \ +\ \pddif{\phi}{y} \ +\ \pddif{\phi}{z} \ =\ \frac{1}{c^2} \pddif{\phi}{t}
\pddif{\phi}{x} \ +\ \pddif{\phi}{y} \ +\ \pddif{\phi}{z} \ =\ \frac{1}{\kappa^2} \pdif{\phi}{t}
\pddif{\phi}{x} \ +\ \pddif{\phi}{y} \ +\ \pddif{\phi}{z} \ +\ k^2 \, \phi\ =\ 0
\pddif{\phi}{x} \ +\ \pddif{\phi}{y} \ +\ \pddif{\phi}{z} \ =\ \frac{1}{c^2} \pddif{\phi}{t} \ +\ \frac{1}{\kappa^2} \pdif{\phi}{t} \ +\ \mu^2 \phi
i\hbar \pdif{\phi}{t} \ =\ \frac{\hbar^2}{2m} \left(\pddif{\phi}{x} \ +\ \pddif{\phi}{y} \ +\ \pddif{\phi}{z}\right) \ +\ V \phi
魔術式の演算を補助するためのもの。ジョブ:「プログラマ」が作成できる。